Medical Image Segmentation
Less than 1 minute
Medical Image Segmentation & Active Learning & Domain Adaptive-Survey
A curated list of medical image segmentation for Active Learning. Keep updated.
📌 Introduction
✧ 基于主动学习的相关文献整理
➢ 论文汇总
1.综述
[1] <[TNNLS 2024][A Survey on Deep Active Learning:Recent Advances and New Frontiers]pdf>
- Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Wei** Ding, and Manabu Okumura.
- 本文定义了Deep Active Learning (DAL)任务,并总结了最具影响力的基线和广泛使用的数据集。从标注类型、查询策略、深度模型架构、学习范式和训练过程5个角度对DAL方法进行了系统的分类,并客观分析了它们的优缺点。全面总结了DAL在自然语言处理(NLP)、计算机视觉(CV)、数据挖掘(DM)等领域的主要应用;最后,在详细分析现有研究的基础上,讨论了面临的挑战和未来的发展方向。
2.CV
3.ADA
4.NLP
[1] <[JNLP 2024][Active Learning with Task Adaptation Pre-training for Speech Emotion Recognition]pdf>
- Dongyuan Li, Ying Zhang, Yusong Wang, Kotaro Funakoshi, and Manabu Okumura.
Reference
[1]https://github.com/Clearloveyuan/awesome-active-learning-New/tree/main
➢ 研究团队
https://github.com/openmedlab